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Cosmological Transition Periods 

R o n a l d  G a u t r e a u  ~ 

Received March 6, 1986 

A method is given for continuously following a model of a universe that in its 
evolution makes a transition from one type of universe to another. As an 
illustration, a universe is considered that initially is radiation-dominated and 
then makes a transition to a final matter-dominated Einstein-de Sitter universe. 
The epoch when the universe changes from being radiation-dominated to being 
matter-dominated is found and is related to the epoch when radiation decouples 
from matter. 

In  desc r ib ing  how the universe  evolves af ter  an a s sumed  Big Bang,  the 
evolu t ion  is usua l ly  b r o k e n  into different  intervals ,  such as a " r a d i a t i o n -  
d o m i n a t e d "  in terval  or  a " m a t t e r - d o m i n a t e d "  interval .  These  different  inter-  
vals are then  ana lyzed  separa te ly ,  wi thou t  much  d iscuss ion  o f  the metr ic  
and  par t ic le  mot ions  in the  t rans i t ion  pe r iod  connec t ing  one interval  to 
another .  In  this p a p e r  we deve lop  a m e t h o d  which,  bes ides  p rov id ing  a 
conven ien t  and  s imple  way  for  t rea t ing  the different  intervals  ind iv idua l ly ,  
gives a f o rma l i sm  for dea l ing  with the  con t inuous  t rans i t ion  f rom a r ad ia t ion -  
d o m i n a t e d  to a m a t t e r - d o m i n a t e d  universe.  In  par t i cu la r ,  we are able  to 
de te rmine  the epoch  c o r r e s p o n d i n g  to the  change  in the  universe  f rom be ing  
r a d i a t i o n - d o m i n a t e d  to be ing  m a t t e r - d o m i n a t e d ,  and  to re la te  this  to the  
epoch  where  r ad ia t ion  decoup le s  f rom matter .  

We  will  cons ide r  on ly  zero-curva ture  universes .  The metr ic  for  such 
universes  is usua l ly  wr i t ten  in the  R o b e r t s o n - W a l k e r  i so t rop ic  form as 

ds2(r,  r )  = e2h(~)(dr2 + r 2 d~"-~ 2) - d'r 2 

d~~ 2=  d 0 2 + s i n  2 0 dq~ 2 (1) 

In this pape r ,  however ,  we will  make  use o f  the  results  o f  a different  
f o rmu la t i on  o f  cosmolog ica l  theory  tha t  we have recent ly  d e v e l o p e d  
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(Gautreau, 1984a), where the metric for the universe has the form 

ds2( R, r) = [dR - m( R /  B) dr]2+ R 2 dO 2 -  dr 2 (2) 

with 

B(r )  = (8~'p/3 + A/3) -1/2 (3) 

where/9 is the density of the cosmological geodesic fluid that is the source 
of the particular universe under consideration, m = +1 ( -1 )  for an expand- 
ing (collapsing) fluid, and A is the cosmological constant. The transforma- 
tion that takes one from the (R, r) coordinates of (2) to the (r, r)  coordinates 
of  (1) is 

R = re h(,) (4) 

To be consistent with a Big Bang picture, from now on we will consider 
only expanding universes (m = +1). Extension to a collapsing universe 
(m = - 1 )  is straightforward. The equation for the trajectory Rg(r) of  a 
radially moving geodesic particle of the expanding cosmological fluid is 
obtained by setting ds2(R, r ) =  - d r  2 in (2) to obtain 

dRg/ dr = Rg/  B (5) 

In (2), both coordinates R and r have very natural physical interpreta- 
tions. The time coordinate r is measured by clocks fixed in the cosmological 
geodesic fluid. On a subspace r = const, the metric (2) becomes 

dsE(R, r = const )= dR2+ R 2 d ~  2 (6) 

which is seen to be flat. Thus, in addition to being the spatial coordinate 
that explicitly exhibits the flatness of r = const subspaces, R has the physical 
significance that it is equal to the proper distance between r-simultaneous 
events in the universe under consideration. We have previously pointed out 
this significance of R for a Schwarzschild field (Gautreau and Hoffmann, 
1978; see also Ftaclas and Cohen, 1980). Our formalism also allows the 
treatment of  cosmological problems not addressable with (1), such as the 
inhomogeneous problem of  describing a Schwarzschild mass imbedded in 
a given universe, in which the metric approaches a Schwarzschild field close 
to the imbedded mass and goes over to the given universe far from the 
Schwarzschild mass (Gautreau, 1984b; see also Van den Bergh and Wils, 
1984). In addition, we have used our formalism to incorporate Dirac's Large 
Numbers hypothesis into Einstein's standard theory of general relativity 
(Gautreau, 1985). 

From the Einstein field equations with the metric (2), the pressure p 
in the cosmological fluid is related to the fluid density p by (Gautreau, 1984a) 

p+p+(24zrp+3A) -~ /2  d p / d r = p + p + ~ B d p / d r = O  (7) 
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Combining (5) with (7), we obtain 

d .  3- d 3 
-~r ( p R g )  + p -~r (  Rg)  = 0 (8) 

Equations (7) and (8), coupled with a relationship between p and p, are 
the fundamental  equations for the quantities p, p, and Rg in the (R, ~-) 
formalism of (2). 

Equation (8) is a statement of conservation of energy. As a galaxy 
evolves along the trajectory Rg(.C), the first law of thermodynamics requires 
that the change in energy d E  of the expanding system between 0 _  < R-< Rg, 
whose volume is V = 4r must be equal to the work done by the pressure 
in the system: 

d E  = - p  d V  = - ~prr d ( R 3) (9) 

The energy in the system is related to the mass M in the system by 
4 n 3  2 E = M c  2 = pVc  2 = p ~ ' ~ g C  (10) 

Combining (9) with (10), we get (8) with c = 1. From now on, we will take 
A = 0 .  

Let us illustrate how some familiar universes fit into this formalism. 
In a radiat ion-dominated universe, the radiation density pr is much greater 
than the matter density p~, p,. >> p.,, so that p = pr + p,. ~ p,, and the pressure 
p = pr /3 .  For this case, the above expressions yield 

B =2~- (11) 

p~ = 3/(32~-r 2) (12) 

ds2(R,  ~-) = [ d R  - ( R / 2 r )  dr]2+ R 2 df~ 2 -  d~ -2 (13) 

and, from (5), the equation for the variation of proper  distance Rg with 
time r of  a geodesic particle of  the cosmological fluid is 

Rg = b ' r  I /2  (14) 

where b is a constant related to the energy of the particle at the Big Bang 
at r = 0. Note that prR 4 = const. 

In a matter-dominated universe with zero pressure, i.e., an Einstein-de 
Sitter (ES) universe, where p ~ pm >> P., we obtain 

B=3~" (15) 

p = 1/(6~-~ "2) (16) 

ds2(R,  "r) = [ d R  - ( 2R / 3 r )  dr ]2+ R 2 df~ 2 -  dr 2 (17) 

and, from (5), the equation of a particle of  the cosmological fluid is 

Rg = b~ "2/3 (18) 
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with the constant b related to the energy that the particle has at the Big 
Bang at r = 0. Note that pR 3 = const, which is a statement that the gravitating 
mass inside an expanding sphere of  radius Rg that attracts a galaxy on the 
surface of the sphere stays constant as the galaxy expands after the Big 
Bang. We have discussed the ES universe extensively elsewhere (Gautreau, 
1984a, 1985). 

We now consider the combined problem of a universe whose density 
consists of  both matter and radiation, so that 

P=Pm+Pr (19) 

We will assume that the pressure is produced by the radiation, with negligible 
contribution from the matter, so that 

p = pr/3 (20) 

Substituting (19) and (20) into (8), we obtain 

d (  d 3 
dr prR4)+ Rg-~ (pmRg)=O (21) 

I f  we assume that there is no conversion of matter into radiation and vice 
versa., the amount  of  matter inside the volume bounded by an expanding 
galaxy will be constant, p,.R 3 = const, so that separately 

\ 

a(pmRag) = 0 (22a) 
d~" 

From (22a) and (22b) we find 

d (  p~R 4) = 0 (22b) 

F ~ pm/ Pr~ Rg (23) 

We then obtain from (7) 

d F / d z = a a ( l + F ) l / 2 / F ,  a = const (24) 

When (24) is integrated from z = 0 and the initial condition is imposed that 
F = p , , / p r = O  at 7 = 0  to be consistent with radiation domination in the 
early universe, one obtains a cubic equation for F ( r ) :  

F 3 - -  3F 2 -  4a t (a t  - 2) = 0 (25) 

I f  a t > 2 ,  (25) has one real root for F, while if a~-<2, there are three real 
roots. Choosing the root where 0---ar  <- 2 that corresponds to F(~ ' )=  0 at 
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r = 0  and F ( r ) = 3  at a t = 2 ,  we obtain 

F = p m / p r  = 1 + 2  cos(20/3 +47r/3)  

cos 0 = 1 - at ,  0 <-- a r  <-- 2 (26a) 

F = Pm/Pr = 1 + { a r - -  1 + [ ( a t -  1) 2 -  111/2} 2/3 

+ { a r - l - [ ( a r - - 1 ) 2 - 1 ] J / 2 }  2/3, at>--2 (26b) 

Combining (22a) and (22b) with (7), we obtain 

B = F~ ( d F / d r )  (27) 

so that B ( r )  is determined from (26). From (3) (with A = 0) we then obtain 

3 ( d F / d r )  2 
Or -- 87/'(1 "~- F ) F  2 (28)  

3 ( d F / d r )  2 
(29) Pm= 8~'(1 + F ) F  

Thus, (26)-(29) completely specify the metric (2) and the densities p,~ and 
pr as a function of cosmological time r, up to an as-yet-undetermined 
constant a. 

In the limit at-+ 0, corresponding to a radiation-dominated universe, 
we have 

F = ( 8 a ~ / 3 )  '/2 (30a) 

B = 2r  (30b) 

P m =  ( 6a )1/2/ (16~rr3/2) (30c) 

Pr --- 3/(32rr ~2) (30d) 

In the limit a r  ~ oo, where there is a matter-dominated universe, 

F = ( 2 a 7 )  2/3 (31a) 

B 3 = ~ r  (31b) 

Pr, = 1/(6~'r  2) (31c) 

Or = l / [67r (2a )2 /3 r  8/3] (31d) 

Thus, as expected, we obtain radiation-dominated or matter-dominated 
universes in the appropriate  limits. 

We can express the constant a in terms of  the present age of  the universe 
r,  and the presently measured temperature T, of  the background microwave 
radiation. From the Planck law, the radiation density of the blackbody 
radiation in units of  mass /vo lume is 

pr = 8rrS( k T ) 4 / 1 5 h 3  c s (32) 
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Subst i tu t ing  this into (31d),  and  insert ing N e w t o n ' s  grav i ta t iona l  cons tan t  
G into the  express ions ,  we obta in  

h9/2c15/2 

a = 2[(87.rs/15)67rG]3/2(kTn)6~. 4 (33) 

Using the values  Tn = 2.7 K and  r~ = 101~ years  = 3.14 • 1017 sec, we get  

a = 3.89 x 10 -12 sec -1 = 1.22 x 10 -4 year  -1 (34) 

I f  we define the t rans i t ion  t ime rc for  the universe  to change  f rom being  
r a d i a t i o n - d o m i n a t e d  to be ing  m a t t e r - d o m i n a t e d  as the t ime when the radi-  
a t ion  dens i ty  equals  the  mat te r  densi ty ,  i.e., when  F = 1, we find f rom (26a) 
that  

a% = 1 - cos(Tr/4) (35) 

Using the va lue  o f  a in (34), we get 

rc = 7.51 x 101~ sec = 2390 years  (36) 

co r r e spond ing  to a dens i ty  f rom (28) or  (29) o f  

Pmc :Prc = 4.81 x 10 -14 k g / m  3 (37) 

and  a r ad ia t ion  t empe ra tu r e  f rom (32) o f  

Tc = 4.89 x 104 K (38) 

It is in teres t ing to c o m p a r e  this value  o f  rc with the a p p r o x i m a t e  value  
~"c that  wou ld  be ob ta ined  by  assuming  tha t  the express ions  (31) for  a r ~  oo 
for  a m a t t e r - d o m i n a t e d  universe  he ld  exact ly  f rom the presen t  epoch  ~- = rn 
back  to r = ~-~. Fo r  this s i tua t ion  we find f rom (31c) and  (31d) that  

Pml Pr = ( Pm, /  P, , ) ( 'c /  r , )  2/3 (39) 

where  Pmn and  p,,  are,  respect ively ,  the mat te r  and  r ad ia t ion  densi t ies  at 
the p resen t  epoch  r = r , .  Set t ing pm= p,, we ob ta in  ~"~ as 

r'c = ( p , J p m , ) 3 / 2 %  (40) 

Wi th  Tn = 2.7 K in (32) 

Prn = 4.46 x 1 0  -31 k g / m  3 (41) 

Using  % = 101~ years  in (31c), we get 

Pmn = 8.06 x 1 0  -27  k g / m  3 (42) 

giving 

~" = 4120 years  (43) 
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This is larger than the value rc = 2390 years in (36),. showing that the effects 
of  increasing radiation density become important as z decreases from z, 
to zc. 

In the standard Big Bang picture, it is assumed that matter and radiation 
are locked together in thermal equilibrium at the same temperature until 
the universe cools to around Td = 3000 K, at which time ionized hydrogen 
recombines with free electrons to form hydrogen atoms. When this occurs, 
the free electrons are no longer available to interact with and scatter the 
radiation, thermal equilibrium cannot be maintained, and the universe 
becomes nearly transparent to radiation. The time corresponding to Td = 
3000 K is referred to as the epoch of decoupling of radiation and matter. 
Before or after decoupling, though, the radiation is blackbody with energy 
density related to temperature by (32). Substituting Td ---- 3000 K into (32), 
we obtain 

Prd = 6.80 x 10 -19 k g / m  3 (44) 

The corresponding epoch Zd can be found from (28). However, the tem- 
perature Tc = 4.89 x 104 K in (38) at the transition epoch rc = 2390 years in 
(36) shows that decoupling will occur well into the matter-dominated 
universe. In this case, we can use (31d) to find Zd as 

rd = 270,000 years (45) 

The evolution with cosmological time ~- of  various quantities is summar- 
ized in Table I. 

It has been proposed by some researchers in the context of  "inflation- 
ary" universes that in the very early universe the predominant  form should 
be a de Sitter universe. 2 A de Sitter universe corresponds to p = p0 = const 
in (3) and (7), with or without a cosmological constant A. In a de Sitter 

Table I. The Evolution with Cosmological Time ~- of  Various Quantities Discussed in this 
Paperf  

ar z (years) F(~') = Pm/Pr Pr (kg/m3) T~ (K) 

0 0 0 oo co 
0.293 2,390 1 4.81 x 10 -14 48,900 
1 8,200 2 3.01 x 10 is 24,470 
2 16,340 3 5.94 X 1 0  - 1 6  16,310 

33 270,000 16.3 6.80 • 10 -19 3,000 
1.22 x 106 101~ 1.81 x 104 4.46 x 10 -31 2.7 

aThe numerical values have been obtained using a = 3.89 x 10 -12 sec -1=  1.22 • lO-4year -1, 
given in (34). 

ZSee Guth (1984) for a review of inflationary scenarios. 
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universe one can have po = 0 and A ~ 0, or p =- t9o with A = 0, or some 
combination of the two. In any case, the equations governing a de Sitter 
interval with transitions to other types of  universes can be worked out in 
our formalism. 

It should be noted, though, that the de Sitter universe is intrinsically 
static, which perhaps is not what one might expect in a violently expanding 
very early universe. The static nature of  the de Sitter universe is not apparent  
with the (r, z) and (R, ~-) coordinates used in (1) and (2). To exhibit the 
static form explicitly, it is necessary to change the time coordinate from the 
geodesic time ~- to a curvature time T such that the metric becomes diagonal 
in (R, T) coordinates. Further, it is questionable whether the metric forms 
(1) or (2) can be achieved by physically sensible geodesic clock reference 
systems in a de Sitter universe (Gautreau, 1983). We have discussed this in 
detail elsewhere (Gautreau, 1983), and so will not develop this further here. 
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